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Abstract

Today’s high-end massively parallel processing (MPP) machines have thousands
to tens of thousands of processors, with next-generation systems planned to have in
excess of one hundred thousand processors. For systems of such scale, efficient I/O is a
significant challenge that cannot be solved using traditional approaches. In particular,
general purpose parallel file systems that limit applications to standard interfaces and
access policies do not scale and will likely be a performance bottleneck for many
scientific applications.

In this paper, we investigate the use of a “lightweight” approach to I/O that requires
the application or I/O-library developer to extend a core set of critical I/O functionality
with the minimum set of features and services required by its target applications. We
argue that this approach allows the development of I/O libraries that are both scalable
and secure. We support our claims with preliminary results for a lightweight check-
point operation on a development cluster at Sandia.
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Lightweight I/O for Scientific
Applications

1 Introduction

Efficient I/O is sometimes referred to as the “Achilles’ heel” of massively-parallel process-
ing (MPP) computing [5]. While part of the blame can be placed on the inability of the
hardware advances for I/O systems to keep pace with advances in CPU, memory, and net-
works [18], we believe the real problem is in the I/O system software. In particular, today’s
parallel file systems are unable to meet the specific needs of many data-intensive MPP ap-
plications. Current parallel file systems and I/O libraries limit applications to a standard,
predefined, set of access interfaces and policies; however, data-intensive applications have
a wide variety of needs and often do not perform well using general-purpose solutions.
In addition, data-intensive applications show significant performance benefits when using
application-specific interfaces that enable advanced parallel-I/O techniques. Examples in-
clude collective I/O, prefetching, and data sieving [25, 26, 27, 33]; tailoring prefetching
and caching policies to match an application’s access patterns, reducing latency and avoid-
ing unnecessary data requests [20, 29]; intelligent application-control of data consistency
and synchronization virtually eliminating the need for file locking [11]; and matching data-
distribution policies to the application’s access patterns in order to optimize parallel access
to distributed disks [40].

This paper describes the Lightweight File System (LWFS) project, a collaboration be-
tween Sandia National Laboratories and the University of New Mexico investigating the
applicability of “lightweight” approaches for I/O on MPP systems. Lightweight designs
identify the essential functionality needed to meet basic operation requirements. The de-
sign of Catamount (the lightweight OS for Sandia’s Red Storm machine) focused on the
need to support MPI style programs on a space-shared system, i.e., a system in which
nodes in the compute partition are allocated to different applications. Because compute
nodes are the unit of allocation, the lightweight kernel needs to insure that applications
running on different nodes cannot interfere with one another, but does not need to address
issues related to competition for resources within a single compute node. Once this essen-
tial functionality has been defined and implemented, additional functionality is relegated to
the libraries and the application itself. The Compute Node Kernel (CNK) [35] developed
for BlueGene/L follows a similar strategy. The advantages of the lightweight approach are
that underlying services do not implement functionality that might degrade the scalabil-
ity of an application and applications are free to implement the functionality they need in a
way that is optimal for the application. The clear disadvantage is that many needed services
must be implemented either in libraries or in some cases within an application itself.

While the benefits of the lightweight approach have been demonstrated in the context of
operating systems for MPP architectures, this approach has not been applied to the design
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Figure 1. The compute nodes in a partitioned architecture use
a “lightweight” operating system with no support for threading,
multi-tasking, or memory management. I/O and service nodes use
a more “heavyweight” operating system (e.g., Linux) to provide
shared services.

of other system services. LWFS represents a lightweight approach to I/O in which the core
system consists of a small set of critical functionality that the I/O library or file system
developer extends to provide custom services, features, and optimizations required by the
target applications.

2 Background and Requirements

Today’s high-end MPP machines have tens of thousands of nodes. For example, “Red
Storm”, the Cray XT3 machine at Sandia National Laboratories [8] has over ten thousand
nodes, and the IBM BlueGene/L [35] installed at Lawrence Livermore National Laboratory,
has over sixty-four thousand compute nodes. Both machines are expected to be used for
large scale applications. For example, 80% of the node-hours of Red Storm are allocated
to applications that use a minimum of 40% of the nodes.

The scale of current and next-generation MPP machines and their supported applica-
tions presents significant challenges for designers of their system software. In this section,
we discuss the accepted solution for their system architecture, and we present the general
design requirements for I/O systems on such architectures.

2.1 System Architecture

To address scaling issues, both Red Storm and BlueGene/L have adopted a “partitioned
architecture” [16] (illustrated in Figure 1). The compute nodes in a partitioned architec-
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Table 1. Compute and I/O nodes for MPPs at the DOE laborato-
ries.

Computer Compute Nodes I/O Nodes Ratio
SNL Intel Paragon (1990s) 1840 32 58:1

ASCI Red (1990s) 4510 73 62:1
Cray Red Storm (2004) 10,368 256 41:1

BlueGene/L (2005) 65,536 1024 64:1

ture use a “lightweight kernel” [24, 35] operating system with no support for threading,
multi-tasking, or memory management. I/O and service nodes use a more “heavyweight”
operating system (e.g., Linux) to provide shared services.

The number of nodes used for computation in an MPP is typically one to two orders
of magnitude greater than the number of nodes used for I/O. For example, Table 1 shows
the compute- and I/O-node configurations for four Massively Parallel Processing (MPP)
systems. Unlike most clusters, compute nodes in MPPs are diskless. This means that all
I/O traffic must traverse the communication network, competing with non-I/O traffic for
the available bandwidth.

2.2 I/O System Scalability

The disparity in the number of I/O and compute nodes, coupled with the fact that compute
nodes are diskless, puts a significant burden on the communication network between the
compute nodes and the I/O nodes. To reduce this burden, the I/O system should minimize
the number of system-imposed communications and allow the clients direct access to the
storage devices.

I/O for scientific applications is often “bursty” in nature. Since there are many more
compute nodes than I/O nodes, an I/O node may receive tens of thousands of near-simultaneous
I/O requests. To handle such surges in load, bulk data-movement for I/O requests should
be controlled by the server [19]: the server should “pull” data from the client for writes
and “push” data to the client for reads. We describe further our approach to this issue in
Section 3.2.

2.3 Application Scalability

Perhaps the most important requirement for an MPP I/O system is that it does not hinder
the scalability of applications. That is, it should not impose unnecessary functionality
that adds overhead on compute nodes. This is a fundamental motivation behind using a
lightweight approach for I/O. To address this concern we designed the core architecture of
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the lightweight file system based on the following rules (where n is the number of compute
nodes and m is the number of I/O nodes):

1. Prohibit system-imposed operations that require O(n) operations.

2. Prohibit system-imposed data structures of size O(n). This implies that the I/O sys-
tem may not use connection-based mechanisms for communications or security.

3. Make operations with O(m) messages between I/O nodes as rare as possible.

2.4 Access Control

Security is a critical concern for I/O systems in general. However, the DOE Laboratories
have particular requirements that impose a significant challenge on I/O system design. In
particular, we need scalable mechanisms for authentication and authorization as well as
“immediate” revocation of access permissions when access policies change.

A critical design requirement for developing scalable authentication and authorization
mechanisms is to minimize the number of required communications to centralized control
points like a metadata server. In traditional file systems, the file system controls access by
forcing every access request to go through a centralized metadata server that authenticates
the user and authorizes the request before allowing the request to pass through to the storage
system (i.e., the I/O nodes). As applications scale to use thousands of nodes, the metadata
server becomes a severe bottleneck for data access. In a partitioned architecture, we need
an authorization model that allows for centralized definitions of access-control policies,
but distributed enforcement of those policies. In the ideal case, every access request could
be independently authenticated at an I/O node without communicating with a centralized
“authorization server”.

We consider it necessary and beneficial to integrate authentication and authorization
into the I/O system architecture. However, the controlled environment of a DOE labora-
tory allows us to make a different choice with respect to network security (privacy of the
information carried over the wire). For our purposes, the I/O system can assume a trusted
transport mechanism that does not allow “replay” attacks, “man-in-the-middle” attacks, or
eavesdropping. From the application-interface level, it is safe for the application and other
system components to transmit private data in clear text. The assumption of a secure trans-
port allows for a more efficient design of the security infrastructure because the I/O system
does not need to encrypt data on the wire, a potentially costly operation. For environments
that already have a secure and reliable network, adding these features to the I/O system
is redundant and adds unnecessary overheads. For environments that are not secure, the
I/O system should use a transport mechanism that provides encryption internally. In either
case, provision of a secure and reliable transport is not an issue for the I/O system.

To provide the level of access control required by our security model, the system must
allow for the “immediate” revocation of access privileges should the access-control policies
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change. Because of the distributed nature of our target I/O system, and the need for dis-
tributed enforcement of access-control policies, immediate revocation presents a scalability
challenge that is not easily solved. We discuss our proposed solution in Section 3.1.4.

3 The LWFS-core

The primary challenge associated with designing the fixed core of a lightweight file system
(called the LWFS-core) is choosing which functionality is required (i.e. will be provided by
the LWFS-core) and which is optional (allowing applications to implement it in different
ways). General design guidelines for the LWFS-core are:

1. The LWFS-core should provide the infrastructure needed to provide controlled access
to data distributed across multiple storage servers.

2. The LWFS-core should be a thin layer above the hardware that presents an accurate
reflection of costs associated with resource usage.

3. The LWFS-core should expose the parallelism of the storage servers to clients to
allow for efficient data access and control over data distribution.

4. The LWFS-core should provide an “open architecture” for optional functionality that
allows the client implementation to accept, reject, replace, or create additional func-
tionality.

In short, the LWFS-core consists of the minimal set of functionality required by all I/O
systems. Based on our guidelines and the requirements expressed in Section 2, we defined
the LWFS-core to include mechanisms for security (i.e., authentication and authorization),
efficient data movement, direct access to data, and support for distributed transactions.

We chose not to include policies for data distribution, caching, prefetching, and others
in the LWFS-core because there are no general solutions that work well for all applications.
Instead, we take an “open architecture” approach that allows the I/O-system developer
to either choose from existing libraries, or implement desired functionality directly. For
example, Figure 2 illustrates potential software stacks that an application may use to access
data. The layers above the LWFS-core provide application-specific functionality in the
form of libraries or file system implementations. Note that since the LWFS-core contains
all required mechanisms for access control, each layer (including the application) may
access the LWFS-core directly.

Figure 3 shows the components that make up the core functionality of a lightweight
I/O system. These components represent the minimum functionality needed to support
the LWFS security and data-access models. In particular, the LWFS-core consists of an
authentication server, an authorization server, and a collection of storage servers. The

11
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authentication server interfaces with an external authentication mechanism (e.g., Kerberos)
to manage and verify identities of users. The authorization server manages and verifies
access-control policies for authorized users. The storage servers enforce the access-control
policies of the authorization server and export an API to access data stored on the attached
device. We discuss details of these services in Sections 3.1 and 3.2.

The remaining components include the client application, the application launcher (part
of the client application), the authentication mechanism, and additional services required
by the client.

3.1 Security

Our security design builds on traditional capability-based systems to provide scalable mech-
anisms for authentication and access control, with near-immediate revocation when access
policies change.

3.1.1 Coarse-grained access control

Unlike many file systems that provide fine-grained access control at the byte level, the
LWFS-core provides coarse-grained access control to containers of objects. Every object
belongs to a unique container, and all objects in the same container are subject to the
same access control policy. LWFS knows nothing about the organization of objects in a
container; higher-level libraries are responsible for implementing and interpreting container
organization. Since LWFS does not constrain object organization, library programmers
may experiment with data distribution and redistribution schemes that efficiently match the
access patterns of different applications.

3.1.2 Credentials and capabilities

The LWFS-core uses capability-like [23] data structures for authentication and authoriza-
tion. For authentication, a credential provides the LWFS system components with proof of
user authentication from a trusted external mechanism (e.g., Kerberos, GSS-API, SASL).
Credentials are fully transferable. Once obtained, the application may distribute the cre-
dential to other processes that act on behalf of the principal. Such functionality is useful,
for example, in distributed applications that want each process composing the distributed
application to share a single identity. The contents of a credential are opaque to the user
and contain a random string of bits that is sufficiently difficult to guess, so as to minimize
the likelihood of unknown users correctly forging valid credentials. Associated with the
credential is the identity of the authenticated user and a lifetime modifier that limits how
long the credential remains valid. Depending on the implementation, these values may be
cryptographically hidden in the credential object or managed by the LWFS-core system.
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In the same way that credentials provide proof of authentication, a capability provides
proof of authorization. A capability is a data structure that entitles the holder to perform
a specific operation on a container of objects. For example, a capability could allow the
holder to read from the objects belonging to the container “foo”. Like credentials, capa-
bilities are transient — limited in life to the current, issuing instance of the authorization
service as well as bounded by the authentication service in use. Capabilities are also fully-
transferable. Once acquired, an application may transfer a capability to any process, in-
cluding processes in other applications–allowing the delegation of access rights. Also like
credentials, capabilities are opaque to the user and contain a cryptographically secure ran-
dom number (a signature) generated by the authorization service. This random number is
difficult to guess and can only be verified by the authorization service, thus reducing the
vulnerability of unauthorized users forging the capabilities.

Having fully-transferable credentials and capabilities limits the number of wire calls
to the authentication or authorization server and makes the distribution of credentials or
capabilities the responsibility of the client. Figure 4-a shows the protocol for acquiring ca-
pabilities from the authorization server. A single client processor first requests a capability
from the authorization server and passes the credential as proof of identification. If this is
the first authorization request from the client, the authorization server asks the authentica-
tion server to verify the credential. Once the initiating client has the capability, it can use a
logarithmic “scatter” routine to distribute capabilities to other client processors.

The capabilities (and credentials) used in the LWFS-core are different from traditional
capabilities because LWFS capabilities can only be verified by the entity that generated
them. In a true capability system [23], any entity can verify the authenticity and integrity of
the capability. We provide the benefits of independently verifiable capabilities by caching
the result of the “verify” request sent from an LWFS component (e.g., storage server) to the
authorization service. For example, Figure 4-b shows the protocol for reading data from
an LWFS storage server. The process starts when a client sends an access request along
with a capability (labeled cap) to a storage server. If the storage server does not have the
cap in its cache of valid capabilities, it sends a “verify” request to the authorization server.
The authorization server then verifies the request and sends a response back to the storage
server. To support revocation (see Section 3.1.4), the authorization server keeps track of
clients that are caching valid capabilities. If the cap is valid, the storage server saves the
capability in its cache and initiates the transport of data between the client and the storage
server along a high-throughput data channel.

Our approach of caching valid capabilities on the storage server diverges from other ap-
proaches. The most common method used to implement capability-based storage architec-
tures is a symmetric-encryption scheme that shares a secret key between the authorization
service and the storage service. This is the approach taken by NASD [14] and Panasas [28]
and it is the recommended approach given by the T10 standards document for object-based
storage devices [38]. In their scheme, the authorization service uses the key to sign new
capabilities and the storage service uses the key to verify the capability. The problem with
this approach is that the authorization server has to trust the storage server to only use that

14



Legend

Client LWFS-core External component

Client transfer Server transfer

OBD
OBD

OBD

S m−1

Authentication
Server

Kerberos

Authorization
Server

OBD
OBD

OBD

S1

OBD
OBD

OBD

S 0

... Storage
Servers

Application
Launcher

...

Application

(1) getcaps(cred) OK

caps

(2) verify(cred)(3) distrib()

OBD
OBD

OBD

S m−1

Authentication
Server

Kerberos

Authorization
Server

OBD
OBD

OBD

S1

OBD
OBD

OBD

S 0

... Storage
Servers

Application
Launcher

...

Application
OK

(1) read(cap)

(2) verify(cap)

(3) put()

(a) Acquire capabilities. (b) Get data.

Figure 4. Figure (a) illustrates the protocol for acquiring capabil-
ities in LWFS. Once the client processors have a capability, they
access data by sending request directly to the storage servers, as
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key to verify existing capabilities (not generate new ones). Our caching scheme only al-
lows the storage server to verify previously authorized capabilities, thus eliminating the
need for the authorization server to trust the storage server. Our scheme, however, requires
explicit communication between the storage server and the authorization server. An amor-
tized analysis of this approach proves that given the computing environment for MPPs, the
amortized impact of this additional communication is minimal; however, space restrictions
do not allow a complete explanation of our analysis.

3.1.3 Trust relationships

Figure 5 illustrates the trust relationships between the different LWFS components. Each
circle represents a single component and encompasses all of the components it trusts. Ap-
plications are not trusted by any components, but applications trust the storage service to
allow access to entities with proper authorization (i.e., capabilities). The storage service
trusts the authorization service to grant capabilities to authorized users, and the autho-
rization service trusts the authentication service to properly identify users. These trust
relationships are not reciprocal.

3.1.4 Revocation of capabilities and credentials

In order to provide the level of access control required by our security model, creden-
tials and capabilities may be revoked by the authentication or authorization service at any
time. We need “immediate” revocation of credentials when an application terminates or for
security-related reasons (e.g., system compromise). Revocation of capabilities is needed,
for instance, when an application changes the access-policy of a previously authorized op-
eration.
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Revocation is a challenge for true capability-based systems because capabilities need
to be independently verifiable and fully transferable. These requirements make it difficult
for the system to track down and invalidate capabilities in a scalable way.

The LWFS scheme uses a combination of the two commonly used methods for capabil-
ity revocation: secure keys and back pointers. LWFS credentials and capabilities contain a
secure hash key, but, the hash can can only be verified by the entity that generated the hash
(i.e., the authorization service). We added an optimization to allow a trusted entity (e.g., a
storage server) to cache results from the authorization service so that subsequent requests
using previously verified capabilities do not require additional communication with the au-
thorization service. These optimizations require back pointers (method 2) so that when the
authorization service revokes a capability, the system can invalidate the cached entries on
each of the storage servers.

One of the nice features of the LWFS capability model is that the system can revoke
partial access to a container of objects. Consider an application that has two capabilities
on a container: one that enables writing, and another to enable reading. Our authorization
service can revoke one capability without revoking the other. For example, if a user decides
to remove write access to the container (via a “chmod”), the storage servers (after being
contacted by the authorization service) can invalidate the capability that allows writing
without invalidating the capability that allows reading.

3.2 Data movement

One of the principal challenges for parallel file systems on MPP systems is dealing with
device contention created by having tens of thousands of compute nodes competing for
the I/O resources of hundreds of I/O servers. At any point in time, hundreds, or even
thousands, of compute nodes may be competing for the same I/O server. Without control
of the movement of data to the I/O server, a “burst” of large I/O requests can quickly
overwhelm the resources of an I/O server causing bottlenecks that affect the performance
and reliability of every competing application and the system as a whole.

To illustrate the problem, consider the hardware configuration of the Cray Red Storm
system at Sandia, generally considered a “well-balanced” system. Based on the specifica-
tions presented in Table 2, an I/O node can receive 6 GB/s from the network, but only out-
put 400 MB/s to the RAID storage. Requests that arrive but cannot be processed are either
buffered on the I/O node or rejected if the I/O node buffer is full. Rejecting buffers causes
the compute nodes to actively re-send the data at some later time based on the flow-control
mechanism implemented by the I/O system or the network transport layer. The re-sending
of I/O requests creates overhead on the compute nodes that hinders the scalability of the
application and consumes valuable network resources.

Well-designed applications avoid resource conflicts by coordinating access among ap-
plication processors either explicitly [12] or by using collective parallel I/O interfaces [37];
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Table 2. Red Storm Communication and I/O Performance [5]

I/O Performance
I/O node topology (per end) 8×16 mesh
Aggregate I/O B/W (per end) 50 GB/s
I/O node B/W (to RAID) 400 MB/s

Interconnect Performance
MPI Latency 2.0 µs 1 hop, 5.0 µs max
Bi-Directional Link B/W 6.0 GB/s
Minimum Bi-Section B/W 2.3 TB/s

however, their solutions do not solve the problem of multiple applications competing for
I/O servers.

We address this problem by using a server-directed approach [19, 32], illustrated in
Figure 6, in which the server controls the transfer of bulk data to/from the client. In our
scheme, the server receives a small request that identifies the operation to perform and
where to “put” or “get” data for reads or writes. The bulk-data transfer operation uses
Portals [6], a zero-copy, one-sided, messaging API that allows the server to make efficient
use of remote direct-memory access (DMA) [41], operating-system bypass, and other op-
timization features that may be available in the underlying network. The server can also
re-order independent requests to improve access to the storage device [36].

We are not unique in this approach. The Lustre Parallel File System uses a sophisti-
cated request-processing layer on top of Portals to provide many of the same features we
desire [4]. Another effort by Wu, Wykoff, and Panda modified the Parallel Virtual File
System (PVFS) to take advantage of the remote DMA capabilities of the InfiniBand net-
work [41], to reduce OS involvement in the data-transfer, and to have the server control
the movement of data. The main distinction between LWFS and those efforts is that our
security model allows us to expose the data-movement interface to the application (rather
than “hiding” it inside the file-system interface), thus allowing a client access to individual
storage devices.

3.3 Object-Based Data Access

The LWFS-core storage service follows a recent trend to utilize intelligent, object-based
storage devices. The object-based storage architecture is more scalable than the traditional
server-attached disk (SAD) architecture because it separates policy decisions from policy
enforcement. Figure 7 illustrates the differences between the server-attached architecture
and the object-based storage architecture. In traditional SAD architectures (Figure 7-a) the
file server manages the block layout of files and decides on and enforces the access-control
policy for every access request. Object-based storage architectures (shown on the right)
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Figure 6. An LWFS I/O server controls data movement by
pulling data from the client for writes or pushing data to the clients
for reads.

move the block layout decisions and policy enforcement to the storage device, reducing the
number of calls to the metadata server and allowing clients direct access to storage devices.

3.4 Transactional semantics

LWFS provides two mechanisms for implementing ACID-compliant transactions: journals
and locks. Journals provide a mechanism to ensure atomicity and durability for transac-
tions. A two-phase commit protocol (part of the LWFS API) helps the client to preserve
the atomicity property because it requires all participating servers to agree on the final state
of the system before changes become permanent. Durability exists because a journal exists
as a persistent object on the storage system. Locks enable consistency and isolation for con-
current transactions by allowing the client to synchronize access to portions of the code that
require protection or which must complete in a particular order based on the consistency
semantics of the application.

4 Case study: checkpointing

Checkpointing application state to stable storage is the most common way for large, long-
running applications to avoid loss of work in the event of a system failure. On MPP sys-
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forces the access-control policy for every access request. Object-
based storage architectures (shown on the right) move the block
layout decisions and policy enforcement to the storage device.

tems, checkpoints are highly I/O intensive and account for nearly 80% of the total I/O usage
in some instances [30]. In this section, we describe how to implement a checkpoint oper-
ation using the core features of LWFS and we compare the performance of a preliminary
implementation to two alternative approaches using traditional parallel file systems.

In order to maximize MPP application throughput, checkpoint processing should pro-
ceed as quickly as possible with as little interference as possible from the I/O system. How-
ever, checkpointing is an example of a logically simple operation that is made unneccesarily
complex by the functionality imposed by traditional file systems. For example, checkpoint-
ing requires no synchronization because all writes are non-overlapping. Checkpointing also
has minimal requirements for data consistency among the participating servers, and it re-
quires the use of a naming service to reference the checkpoint data when the application
needs to reconstruct the process on a restart.

Figure 8 shows pseudocode of the steps required to implement a checkpoint operating
using the LWFS core services. The first step is to create a container and acquire the capabil-
ities required to create and write to objects into that container (lines 2 and 3 of the MAIN()
function). Since we can create multiple checkpoint files using the same container ID, it is
only necessary to perform this step once. At application-defined intervals, the application
pauses computation to perform a CHECKPOINT() operation. In our implementation, the
client processors independently, in parallel, create and dump process state to individual
storage objects. After completing the writes, a single process gathers and creates sufficient
metadata to describe the checkpoint objects as a coherent dataset. That process then writes
the metadata to a single storage object, creates a name in the naming service, and associates
the metadata object with that name. Since the checkpoint operation involves a number of of
distributed tasks to different servers, we execute each task inside a distributed transaction.

We illustrate the benefits of the lightweight checkpoint operation by comparing it with
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MAIN()
1: cred← GETCREDS()
2: cid← CREATECONTAINER(cred)
3: caps← GETCAPS(cid)
4: while not done do
5: state← COMPUTE()
6: CHECKPOINT(state, path,caps)
7: end while

CHECKPOINT(state, path,caps)

1: txnid← BEGINTXN()
2: ob j← CREATEOBJ(txnid,caps)
3: DUMPSTATE(txnid,state,ob j,caps)
4: if rank = 0 then
5: mdob j← CREATEOBJ(txnid,caps)
6: end if
7: GATHERMETADATA(mdob j,0)
8: if rank = 0 then
9: CREATENAME(txnid, path,mdob j)

10: end if
11: ENDTXN(txnid)

Figure 8. Pseudocode for checkpointing application state using
the LWFS.

two commonly used implementations that access storage through a traditional parallel file
system. In the first alternative, the application creates a single parallel file shared by all ap-
plication processors. The second alternative is for the application to create a single parallel
file per process.

In both implementations, limitations inherent in the parallel file system introduce sig-
nificant performance bottlenecks. These bottlenecks are shown in Figures 9 and 10. The
plots show measured throughput and bandwidth of the lightweight checkpoint and the two
alternative implementations running on an I/O-development cluster at Sandia. The cluster
is comprised of 40 2-way SMP 2.0 GHz Opteron nodes with a Myrinet interconnect. We
used 1 node for the metadata/authorization server, 8 as storage servers, and the remain-
ing 31 we used for compute nodes. For the larger runs, some of the compute nodes host
multiple client processes.

For the two implementations that uses a traditional PFS, each storage-server node
hosted two Lustre object-storage targets (OSTs), each mounted to an ext3 file system
using an LSI MetaStor 4400 fibre channel RAID with 1GB/s fibre channel links. For the
LWFS implementation, we disabled the Lustre OSTs on each storage node and configured
two LWFS storage servers to use the same RAIDs. In every experiment, each node writes
512 MB of data and measures the time to open, write, sync, and close the file (or object).
The application reports the maximum time over all participating processes. All plots show
the average and standard deviation over a minimum of 5 trials.

In the shared-file case, even though the processors write their process state to a non-
overlapping regions, the file system’s consistency and synchronization semantics get in the
way, severely limiting the throughput of the checkpoint operation. In fact, as shown in
Figure 9, the throughput of the shared-file case is roughly half that of the file-per-process
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Figure 9. These figures show the throughput in MB/sec as a
function of the number of processors of the Lustre file-per-process,
Lustre shared file, and LWFS object-per-process implementations
of the checkpoint operation.
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Figure 10. Figure (a) shows a logplot comparison of the through-
put of creating Lustre files for the file-per-process implementation
compared to the throughput creating objects for the LWFS imple-
mentation. Figures (b) and (c) show more detail for the individual
implementations.
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and the lightweight checkpoint implementations.

In the file-per-process implementation, the bandwidth scales well, but the limiting fac-
tor is the time to create the checkpoint files. Since every file-create request goes through
the centralized metadata server, the performance is always limited to the throughput in
operations/second of the metadata server. In contrast, the lightweight checkpoint opera-
tion creates the checkpoint objects in parallel. The performance comparison in Figure 10
reflects these differences.

For small systems, the overhead of file creation may be small relative to the time it
takes to actually dump the file; however, operations to a centralized metadata server are
inherently unscalable and as the system grows, this “file creation” overhead becomes a
serious problem. For example, if we make conservative approximations to scale the results
from our development cluster to a theoretical petaflop system with 100,000 compute nodes
and 2000 I/O nodes, creating the files will require multiple minutes to complete–roughly
10% of the total time for the checkpoint operation.

5 Related Work

Our lightweight approach to I/O-system design is motivated by the success of microkernel
architectures [1, 3], especially for MPPs [7, 39], and is a direct extension of previous work
on “stackable” file systems [17, 21, 42]; however, because of space limitations, we focus
this section on other efforts to develop scalable I/O systems.

There are several existing parallel file systems designed for large-scale clusters or
MPPs. Of these, Lustre [10], PVFS2 [22, 34], and NASD [13, 14] (and the commercial
version Panasas [28]) are the most widely used. LWFS distinguishes itself from these other
file systems in two areas: how services are partitioned, and the trust relationship between
components.

Lustre, NASD, and PVFS all use a similar architecture that consists of client proces-
sors, metadata servers, and storage servers. For each of these systems, the metadata server
provides namespace management (including metadata consistency), access-control policy,
and some control of data distribution for parallel files. Although they may provide some
flexibility with respect to data-distribution policies, the client may not extend those policies
or create new ones. In contrast, LWFS separates the functionality of traditional metadata
servers to allow for a variety of schemes and implementations.

Unlike LWFS, Lustre and PVFS extend the trust domain all the way to the client. In
Lustre, the client-side services exist entirely in a trusted kernel. The PVFS client code
runs in user space, but trusts the client to perform operations that were authorized when
the client opened the file. While trusting the client eliminates the need to authenticate
every access operation, it complicates the development process by tying development of
the operating system to the file system. The file system must support each version of the
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operating-system kernel. Systems like PVFS that trust a client running outside a trusted
kernel are inherently insecure because they allow potentially unauthorized operations to
access data.

Of the three file systems, NASD is most similar to LWFS. Both LWFS and NASD
use capabilities that the system verifies before allowing object access; however, NASD
capabilities are different in several ways. In contrast to LWFS capabilities that provide
coarse-grained access control to containers, Panasas capabilities enable “fine-grained” ac-
cess control to objects. While there are some benefits with respect to data consistency
and security associated with fine-grained access-control, a NASD client may have to ac-
quire more capabilities to access a file. NASD does have “indirection objects” [15] that
group objects into the same access-control domain, but the client still has the ability to
change the access-control policy of the sub-objects, invalidating the usefulness of the in-
direction object. NASD and LWFS also differ in how they invalidate capabilities (i.e.,
revocation). NASD updates a version attribute on an object, which causes subsequent
capability-verification attempts to fail–forcing the client to re-acquire all capabilities for
that object. In contrast, LWFS can revoke a subset of capabilities for a container by only
removing cache entries (see Section 3.1.4) for a particular operation. For example, LWFS
can revoke write capabilities without revoking read capabilities.

There are other differences between LWFS and NASD. NASD (designed primarily for
clusters) assumes an untrusted network. For the reasons expressed in Section 2.4, we chose
to trust the network. Also, NASD does not automatically refresh expired capabilities. After
a capability expires, the client has to re-acquire capabilities (possibly an O(n) operation).
NASD staggers expiry times in an effort to reduce the impact of expiring capabilities, but
for operations like a checkpoint, with large gaps between file accesses, the cost of re-
acquiring expired capabilities is still a problem.

There is also an effort to standardize the interface to object-based storage devices
(OSD) [38]. We are looking forward to integrating vendor-supplied devices using this
interface into LWFS, but as we mentioned in Section 3.1.2, we use a different approach to
verify capabilities. It would be helpful if the T10 standard provided some flexibility in this
regard.

6 Future Work

Although our experiments provide insight to the scalability of our approach on MPP sys-
tems, our development cluster is clearly insufficient for true scalability experiments. The
next logical step is to acquire more compelling evidence by running experiments on San-
dia’s large production machines. This effort is underway and we expect to have opportuni-
ties for exclusive access to these machines in the near term.

LWFS has potential as both a vehicle for I/O research and a framework for developing
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production-ready file systems. In the short term, we plan to implement two traditional
parallel file systems: one that provides POSIX semantics and standard distribution policies,
and another (like the PVFS [9]) with relaxed synchronization semantics that make the client
responsible for data consistency.

We are also interested in implementing commonly used I/O libraries like MPI-I/O,
HDF-5, and PnetCDF directly on top of the LWFS core. In current implementations, these
libraries are layered on top of low-level libraries, which are in-turn layered on top of a
general-purpose parallel file system. We believe that commonly used high-level libraries
can make better use of the underlying hardware and take advantage of application-specific
synchronization and consistency policies if they bypass the intermediate layers and interact
directly with the LWFS core components.

We are also investigating how to apply the lightweight file system approach to numer-
ous other research areas including scalable namespace management, application-specific
distribution policies, client-coordinated synchronization and data consistency, I/O libraries
that incorporate remote processing (e.g., remote filtering) [2, 31], and many others.
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8 Summary

In this paper, we present a lightweight approach to I/O for MPP computing that allows
data-intensive operations to bypass features of traditional parallel file systems that hinder
the scalability of the application. In addition to being scalable, our design is both secure
and extensible, allowing library, I/O systems, and applications to implement functionality
specific to their needs.

Our implementation of a lightweight checkpoint operation provides an example that il-
lustrates the simplicity and performance benefits of a lightweight approach, but we believe
there are number of other areas that will also benefit. For example, lightweight imple-
mentations of common I/O libraries like MPI-IO, HDF-5, netCDF, and others, can avoid
the overheads and loss of dataset-specific semantics caused by the I/O abstraction layers
that typically sit between the high-level library and the I/O-system hardware. In addition,
application-specific I/O libraries can benefit from control over data distribution and a flexi-
ble data consistency and synchronization model that allows client processors to coordinate
access to shared devices.
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LWFS is still in a relatively early stage of development. While performance results from
experiments on our development machine are encouraging and provide insight as to how
well LWFS will scale to larger machines, we look forward to demonstrating the benefits
of the lightweight approach in larger scale application scenarios. This effort is already
underway and we expect to have significantly more compelling results in the near future.
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